Underwater ice geometry at the front of calving glaciers provides crucial information for calving and underwater melting. In this study, we present ice geometry captured by operating a side-scanning sonar near the front of Glaciar Grey, a freshwater calving glacier in Patagonia. The observations revealed ice projecting into the lake with a substantially different structure from that of known tidewater glaciers. Terrace-like ice structures were found at several tens of meters below the water surface and extended up to 100 m from the aerial ice front. The structure depicted by the sonar was confirmed when the ice front was exposed by flotation during a major calving event. We infer that buoyant force acting on the submerged ice terrace acted as a driver of the calving event. Our study demonstrates the importance of the underwater ice geometry, which affects sizable calving at the front of freshwater calving glaciers.